EVALUATION OF THE DEDEKIND ZETA FUNCTIONS AT s = −1 OF THE SIMPLEST QUARTIC FIELDS

نویسندگان

  • HYUN KWANG KIM
  • JUN HO LEE
چکیده

The simplest quartic field was introduced by M. Gras and studied by A. J. Lazarus. In this paper, we will evaluate the values of the Dedekind zeta functions at s = −1 of the simplest quartic fields. We first introduce Siegel’s formula for the values of the Dedekind zeta function of a totally real number field at negative odd integers, and will apply Siegel’s formula to the simplest quartic fields. In the second, we will develop basic arithmetic properties of the simplest quartic fields which will be necessary in our computation. We will compute the discriminant, ring of integers, and different of the simplest quartic fields. In the third, we will give a full description for a Siegel lattice of the simplest quartic fields, and will develop a method of computing sum of divisor function for ideals. Finally, by combining these results, we compute the values of the Dedekind zeta function at s = −1 of the simplest quartic fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper bounds for residues of Dedekind zeta functions and class numbers of cubic and quartic number fields

Let K be an algebraic number field. Assume that ζK(s)/ζ(s) is entire. We give an explicit upper bound for the residue at s = 1 of the Dedekind zeta function ζK(s) of K. We deduce explicit upper bounds on class numbers of cubic and quartic number fields.

متن کامل

Computing Special Values of Partial Zeta Functions

We discuss computation of the special values of partial zeta functions associated to totally real number fields. The main tool is the Eisenstein cocycle Ψ , a group cocycle for GLn(Z); the special values are computed as periods of Ψ , and are expressed in terms of generalized Dedekind sums. We conclude with some numerical examples for cubic and quartic fields of small discriminant.

متن کامل

Zeros of Dedekind zeta functions in the critical strip

In this paper, we describe a computation which established the GRH to height 92 (resp. 40) for cubic number fields (resp. quartic number fields) with small discriminant. We use a method due to E. Friedman for computing values of Dedekind zeta functions, we take care of accumulated roundoff error to obtain results which are mathematically rigorous, and we generalize Turing’s criterion to prove t...

متن کامل

EXPLICIT LOWER BOUNDS FOR RESIDUES AT s = 1 OF DEDEKIND ZETA FUNCTIONS AND RELATIVE CLASS NUMBERS OF CM-FIELDS

Let S be a given set of positive rational primes. Assume that the value of the Dedekind zeta function ζK of a number field K is less than or equal to zero at some real point β in the range 1 2 < β < 1. We give explicit lower bounds on the residue at s = 1 of this Dedekind zeta function which depend on β, the absolute value dK of the discriminant of K and the behavior in K of the rational primes...

متن کامل

Zeros of Dedekind Zeta Functions and Holomorphy of Artin L-functions

For any Galois extension of number fields K/k, the object of this note is to show that if the quotient ζK(s)/ζk(s) of the Dedekind zeta functions has a zero of order at most max{2, p2 − 2} at s0 6= 1, then every Artin L-function for Gal(K/k) is holomorphic at s0, where p2 is the second smallest prime divisor of the degree of K/k. This result gives a refinement of the work of Foote and V. K. Murty.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010